Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.211
Filtrar
1.
Biochem Biophys Res Commun ; 710: 149892, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38581951

RESUMO

Chlorination is a potent disinfectant against various microorganisms, including bacteria and viruses, by inducing protein modifications and functional changes. Chlorine, in the form of sodium hypochlorite, stands out as the predominant sanitizer choice due to its cost-effectiveness and powerful antimicrobial properties. Upon exposure to chlorination, proteins undergo modifications, with amino acids experiencing alterations through the attachment of chloride or oxygen atoms. These modifications lead to shifts in protein function and the modulation of downstream signaling pathways, ultimately resulting in a bactericidal effect. However, certain survival proteins, such as chaperones or transcription factors, aid organisms in overcoming harsh chlorination conditions. The expression of YabJ, a highly conserved protein from Staphylococcus aureus, is regulated by a stress-activated sigma factor called sigma B (σB). This research revealed that S. aureus YabJ maintains its structural integrity even under intense chlorination conditions and harbors sodium hypochlorite molecules within its surface pocket. Notably, the pocket of S. aureus YabJ is primarily composed of amino acids less susceptible to chlorination-induced damage, rendering it resistant to such effects. This study elucidates how S. aureus YabJ evades the detrimental effects of chlorination and highlights its role in sequestering sodium hypochlorite within its structure. Consequently, this process enhances resilience and facilitates adaptation to challenging environmental conditions.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Cloretos/metabolismo , Hipoclorito de Sódio/farmacologia , Hipoclorito de Sódio/metabolismo , Proteínas de Bactérias/metabolismo , Aminoácidos/metabolismo
2.
Nat Commun ; 15(1): 3480, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658537

RESUMO

The analysis of neural circuits has been revolutionized by optogenetic methods. Light-gated chloride-conducting anion channelrhodopsins (ACRs)-recently emerged as powerful neuron inhibitors. For cells or sub-neuronal compartments with high intracellular chloride concentrations, however, a chloride conductance can have instead an activating effect. The recently discovered light-gated, potassium-conducting, kalium channelrhodopsins (KCRs) might serve as an alternative in these situations, with potentially broad application. As yet, KCRs have not been shown to confer potent inhibitory effects in small genetically tractable animals. Here, we evaluated the utility of KCRs to suppress behavior and inhibit neural activity in Drosophila, Caenorhabditis elegans, and zebrafish. In direct comparisons with ACR1, a KCR1 variant with enhanced plasma-membrane trafficking displayed comparable potency, but with improved properties that include reduced toxicity and superior efficacy in putative high-chloride cells. This comparative analysis of behavioral inhibition between chloride- and potassium-selective silencing tools establishes KCRs as next-generation optogenetic inhibitors for in vivo circuit analysis in behaving animals.


Assuntos
Caenorhabditis elegans , Neurônios , Optogenética , Peixe-Zebra , Animais , Caenorhabditis elegans/genética , Neurônios/metabolismo , Neurônios/fisiologia , Optogenética/métodos , Channelrhodopsins/metabolismo , Channelrhodopsins/genética , Humanos , Drosophila , Canais de Potássio/metabolismo , Canais de Potássio/genética , Cloretos/metabolismo , Animais Geneticamente Modificados , Comportamento Animal , Células HEK293 , Drosophila melanogaster
3.
Proc Natl Acad Sci U S A ; 121(15): e2322135121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38568964

RESUMO

Endothelial cells (ECs) line the wall of blood vessels and regulate arterial contractility to tune regional organ blood flow and systemic pressure. Chloride (Cl-) is the most abundant anion in ECs and the Cl- sensitive With-No-Lysine (WNK) kinase is expressed in this cell type. Whether intracellular Cl- signaling and WNK kinase regulate EC function to alter arterial contractility is unclear. Here, we tested the hypothesis that intracellular Cl- signaling in ECs regulates arterial contractility and examined the signaling mechanisms involved, including the participation of WNK kinase. Our data obtained using two-photon microscopy and cell-specific inducible knockout mice indicated that acetylcholine, a prototypical vasodilator, stimulated a rapid reduction in intracellular Cl- concentration ([Cl-]i) due to the activation of TMEM16A, a Cl- channel, in ECs of resistance-size arteries. TMEM16A channel-mediated Cl- signaling activated WNK kinase, which phosphorylated its substrate proteins SPAK and OSR1 in ECs. OSR1 potentiated transient receptor potential vanilloid 4 (TRPV4) currents in a kinase-dependent manner and required a conserved binding motif located in the channel C terminus. Intracellular Ca2+ signaling was measured in four dimensions in ECs using a high-speed lightsheet microscope. WNK kinase-dependent activation of TRPV4 channels increased local intracellular Ca2+ signaling in ECs and produced vasodilation. In summary, we show that TMEM16A channel activation reduces [Cl-]i, which activates WNK kinase in ECs. WNK kinase phosphorylates OSR1 which then stimulates TRPV4 channels to produce vasodilation. Thus, TMEM16A channels regulate intracellular Cl- signaling and WNK kinase activity in ECs to control arterial contractility.


Assuntos
Cloretos , Proteínas Serina-Treonina Quinases , Camundongos , Animais , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Cloretos/metabolismo , Células Endoteliais/metabolismo , Canais de Cátion TRPV/metabolismo , Transdução de Sinais/fisiologia
4.
Sheng Wu Gong Cheng Xue Bao ; 40(4): 1138-1156, 2024 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-38658154

RESUMO

Manganese (Mn) is an essential element for plants and plays a role in various metabolic processes. However, excess manganese can be toxic to plants. This study aimed to analyze the changes in various physiological activities and the transcriptome of Arabidopsis under different treatments: 1 mmol/L MnCl2 treatment for 1 day or 3 days, and 1 day of recovery on MS medium after 3 days of MnCl2 treatment. During the recovery phase, minor yellowing symptoms appeared on the leaves of Arabidopsis, and the content of chlorophyll and carotenoid decreased significantly, but the content of malondialdehyde and soluble sugar increased rapidly. Transcriptome sequencing data shows that the expression patterns of differentially expressed genes exhibit three major models: initial response model, later response model, recovery response model. Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis identified several affected metabolic pathways, including plant hormone signal transduction mitosolysis activates protein kinase (MAPK) phytohormone signaling, phenylpropanoid biosynthesis, ATP binding cassette transporters (ABC transporter), and glycosphingolipid biosynthesis. Differential expressed genes (DEGs) involved in phenylpropanoid biosynthesis, ABC transporter, and glycosphingolipid biosynthesis, were identified. Sixteen randomly selected DEGs were validated through qRT-PCR and showed consistent results with RNA-seq data. Our findings suggest that the phenylpropanoid metabolic pathway is activated to scavenge reactive oxygen species, the regulation of ABC transporter improves Mn transport, and the adjustment of cell membrane lipid composition occurs through glycerophospholipid metabolism to adapt to Mn stress in plants. This study provides new insights into the molecular response of plants to Mn stress and recovery, as well as theoretical cues for cultivating Mn-resistant plant varieties.


Assuntos
Arabidopsis , Manganês , Estresse Fisiológico , Arabidopsis/genética , Arabidopsis/metabolismo , Manganês/metabolismo , Regulação da Expressão Gênica de Plantas , Transcriptoma , Perfilação da Expressão Gênica , Cloretos/metabolismo , Compostos de Manganês/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Clorofila/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Carotenoides/metabolismo
5.
Kidney360 ; 5(3): 471-480, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38433340

RESUMO

Pictured, described, and speculated on, for close to 400 years, the function of the rectal gland of elasmobranchs remained unknown. In the late 1950s, Burger discovered that the rectal gland of Squalus acanthias secreted an almost pure solution of sodium chloride, isosmotic with blood, which could be stimulated by volume expansion of the fish. Twenty five years later, Stoff discovered that the secretion of the gland was mediated by adenyl cyclase. Studies since then have shown that vasoactive intestinal peptide (VIP) is the neurotransmitter responsible for activating adenyl cyclase; however, the amount of circulating VIP does not change in response to volume expansion. The humoral factor involved in activating the secretion of the gland is C-type natriuretic peptide, secreted from the heart in response to volume expansion. C-type natriuretic peptide circulates to the gland where it stimulates the release of VIP from nerves within the gland, but it also has a direct effect, independent of VIP. Sodium, potassium, and chloride are required for the gland to secrete, and the secretion of the gland is inhibited by ouabain or furosemide. The current model for the secretion of chloride was developed from this information. Basolateral NaKATPase maintains a low intracellular concentration of sodium, which establishes the large electrochemical gradient for sodium directed into the cell. Sodium moves from the blood into the cell (together with potassium and chloride) down this electrochemical gradient, through a coupled sodium, potassium, and two chloride cotransporter (NKCC1). On activation, chloride moves from the cell into the gland lumen, down its electrical gradient through apical cystic fibrosis transmembrane regulator. The fall in intracellular chloride leads to the phosphorylation and activation of NKCC1 that allows more chloride into the cell. Transepithelial sodium secretion into the lumen is driven by an electrical gradient through a paracellular pathway. The aim of this review was to examine the history of the origin of this model for the transport of chloride and suggest that it is applicable to many epithelia that transport chloride, both in resorptive and secretory directions.


Assuntos
Tubarões , Animais , Tubarões/metabolismo , Glândula de Sal/metabolismo , Cloretos/metabolismo , Cloretos/farmacologia , Cação (Peixe)/metabolismo , Adenilil Ciclases/metabolismo , Adenilil Ciclases/farmacologia , Peptídeo Natriurético Tipo C/metabolismo , Peptídeo Natriurético Tipo C/farmacologia , Peptídeo Intestinal Vasoativo/metabolismo , Peptídeo Intestinal Vasoativo/farmacologia , Sódio/metabolismo , Sódio/farmacologia , Potássio/metabolismo , Potássio/farmacologia
6.
Nat Commun ; 15(1): 2085, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453905

RESUMO

Chloride Intracellular Channel (CLIC) family members uniquely transition between soluble and membrane-associated conformations. Despite decades of extensive functional and structural studies, CLICs' function as ion channels remains debated, rendering our understanding of their physiological role incomplete. Here, we expose the function of CLIC5 as a fusogen. We demonstrate that purified CLIC5 directly interacts with the membrane and induces fusion, as reflected by increased liposomal diameter and lipid and content mixing between liposomes. Moreover, we show that this activity is facilitated by acidic pH, a known trigger for CLICs' transition to a membrane-associated conformation, and that increased exposure of the hydrophobic inter-domain interface is crucial for this process. Finally, mutation of a conserved hydrophobic interfacial residue diminishes the fusogenic activity of CLIC5 in vitro and impairs excretory canal extension in C. elegans in vivo. Together, our results unravel the long-sought physiological role of these enigmatic proteins.


Assuntos
Caenorhabditis elegans , Cloretos , Animais , Cloretos/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Canais de Cloreto/metabolismo , Lipossomos
7.
Cell Calcium ; 118: 102855, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38364706

RESUMO

Chloride ions (Cl-) play a pivotal role in synaptic inhibition in the central nervous system, primarily mediated through ionotropic mechanisms. A recent breakthrough emphathizes the significant influence of astrocytic intracellular chloride concentration ([Cl-]i) regulation, a field still in its early stages of exploration. Typically, the [Cl-]i in most animal cells is maintained at lower levels than the extracellular chloride [Cl-]o, a critical balance to prevent cell swelling due to osmotic pressure. Various Cl- transporters are expressed differently across cell types, fine-tuning the [Cl-]i, while Cl- gradients are utilised by several families of Cl- channels. Although the passive distribution of ions within cells is governed by basic biophysical principles, astrocytes actively expend energy to sustain [Cl-]i at much higher levels than those achieved passively, and much higher than neuronal [Cl-]i. Beyond the role in volume regulation, astrocytic [Cl-]i is dynamically linked to brain states and influences neuronal signalling in actively behaving animals. As a vital component of brain function, astrocytic [Cl-]i also plays a role in the development of disorders where inhibitory transmission is disrupted. This review synthesises the latest insights into astrocytic [Cl-]i, elucidating its role in modulating brain function and its implications in various pathophysiological conditions.


Assuntos
Astrócitos , Cloretos , Animais , Astrócitos/metabolismo , Cloretos/metabolismo , Neurônios/metabolismo , Transdução de Sinais , Encéfalo/metabolismo , Canais de Cloreto/metabolismo
8.
Environ Toxicol ; 39(5): 2937-2947, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38308452

RESUMO

Mercury chloride is a type of heavy metal that causes the formation of free radicals, causing hepatotoxicity, nephrotoxicity and apoptosis. In this study, the effects of naringenin on oxidative stress and apoptosis in the liver and kidney of rats exposed to mercury chloride were investigated. In the study, 41 2-month-old male Wistar-Albino rats were divided into five groups. Accordingly, group 1 was set as control group, group 2 as naringenin-100, group 3 as mercury chloride, group 4 as mercury chloride + naringenin-50, and group 5 as mercury chloride + naringenin-100. For the interventions, 1 mL/kg saline was administered to the control, 0.4 mg/kg/day mercury (II) chloride to the mercury chloride groups by i.p., and 50 and 100 mg/kg/day naringenin prepared in corn oil to the naringenin groups by gavage. All the interventions lasted for 20 days. Mercury chloride administration was initiated 1 h following the administration of naringenin. When mercury chloride and the control group were compared, a significant increase in plasma urea, liver and kidney malondialdehyde (MDA) levels, in kidney superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), glutathione-S-transferase (GST) activities (p < .001), and a significant decrease in liver and kidney glutathione (GSH) levels (p < .001), in liver catalase (CAT) activity (p < .01) were observed. In addition, histopathological changes and a significant increase in caspase-3 levels were detected (p < .05). When mercury chloride and treatment groups were compared, the administration of naringenin caused a decrease aspartate transaminase (AST), alanine transaminase (ALT), lactate dehydrogenase (LDH) (p < .01), urea, creatinine levels (p < .001) in plasma, MDA levels in liver and kidney, SOD, GSH-Px, GST activities in kidney (p < .001), and increased GSH levels in liver and kidney. The addition of naringenin-100 increased GSH levels above the control (p < .001). The administration of naringenin was also decreased histopathological changes and caspase-3 levels (p < .05). Accordingly, it was determined that naringenin is protective and therapeutic against mercury chloride-induced oxidative damage and apoptosis in the liver and kidney, and 100 mg/kg naringenin is more effective in preventing histopathological changes and apoptosis.


Assuntos
Cloretos , Flavanonas , Mercúrio , Ratos , Masculino , Animais , Cloretos/metabolismo , Caspase 3/metabolismo , Ratos Wistar , Cloreto de Mercúrio/toxicidade , Cloreto de Mercúrio/metabolismo , Estresse Oxidativo , Antioxidantes/metabolismo , Rim , Fígado , Glutationa/metabolismo , Superóxido Dismutase/metabolismo , Apoptose , Mercúrio/metabolismo , Mercúrio/farmacologia , Ureia
9.
Am J Physiol Renal Physiol ; 326(4): F600-F610, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38299213

RESUMO

The transcription factor farnesoid X receptor (FXR) regulates energy metabolism. Specifically, FXR functions to regulate cystic fibrosis transmembrane conductance regulator (CFTR)-mediated Cl- secretion in intestinal epithelial cells. Therefore, this study aimed to investigate the role of FXR in CFTR-mediated Cl- secretion in renal tubular cells and to further elucidate its effects on renal cyst formation and growth. CFTR-mediated Cl- transport was evaluated via short-circuit current (ISC) measurements in Madin-Darby canine kidney (MDCK) cell monolayers and primary rat inner medullary collecting duct cells. The role of FXR in renal cyst formation and growth was determined by the MDCK cell-derived cyst model. Incubation with synthesized (GW4064) and endogenous (CDCA) FXR ligands reduced CFTR-mediated Cl- secretion in a concentration- and time-dependent manner. The inhibitory effect of FXR ligands was not due to the result of reduced cell viability and was attenuated by cotreatment with an FXR antagonist. FXR activation significantly decreased CFTR protein but not its mRNA. In addition, FXR activation inhibited CFTR-mediated Cl- secretion in primary renal collecting duct cells. FXR activation decreased ouabain-sensitive ISC without altering Na+-K+-ATPase mRNA and protein levels. Furthermore, FXR activation significantly reduced the number of cysts and renal cyst expansion. These inhibitory effects were correlated with a decrease in the expression of protein synthesis regulators mammalian target of rapamycin/S6 kinase. This study shows that FXR activation inhibits Cl- secretion in renal cells via inhibition of CFTR expression and retards renal cyst formation and growth. The discoveries point to a physiological role of FXR in the regulation of CFTR and a potential therapeutic application in polycystic kidney disease treatment.NEW & NOTEWORTHY The present study reveals that farnesoid X receptor (FXR) activation reduces microcyst formation and enlargement. This inhibitory effect of FXR activation is involved with decreased cell proliferation and cystic fibrosis transmembrane conductance regulator-mediated Cl- secretion in renal collecting duct cells. FXR might represent a novel target for the treatment of autosomal dominant polycystic kidney disease.


Assuntos
Cistos , Doenças Renais Policísticas , Animais , Cães , Ratos , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Rim/metabolismo , Doenças Renais Policísticas/metabolismo , Células Madin Darby de Rim Canino , Cistos/metabolismo , RNA Mensageiro/metabolismo , Cloretos/metabolismo , Mamíferos/genética , Mamíferos/metabolismo
10.
J Comp Physiol B ; 194(1): 21-32, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38308715

RESUMO

In salivary acinar cells, cholinergic stimulation induces elevations of cytosolic [Ca2+]i to activate the apical exit of Cl- through TMEM16A Cl- channels, which acts as a driving force for fluid secretion. To sustain the Cl- secretion, [Cl-]i must be maintained to levels that are greater than the electrochemical equilibrium mainly by Na+-K+-2Cl- cotransporter-mediated Cl- entry in basolateral membrane. Glucose transporters carry glucose into the cytoplasm, enabling the cells to produce ATP to maintain Cl- and fluid secretion. Sodium-glucose cotransporter-1 is a glucose transporter highly expressed in acinar cells. The salivary flow is suppressed by the sodium-glucose cotransporter-1 inhibitor phlorizin. However, it remains elusive how sodium-glucose cotransporter-1 contributes to maintaining salivary fluid secretion. To examine if sodium-glucose cotransporter-1 activity is required for sustaining Cl- secretion to drive fluid secretion, we analyzed the Cl- currents activated by the cholinergic agonist, carbachol, in submandibular acinar cells while comparing the effect of phlorizin on the currents between the whole-cell patch and the gramicidin-perforated patch configurations. Phlorizin suppressed carbachol-induced oscillatory Cl- currents by reducing the Cl- efflux dependent on the Na+-K+-2Cl- cotransporter-mediated Cl- entry in addition to affecting TMEM16A activity. Our results suggest that the sodium-glucose cotransporter-1 activity is necessary for maintaining the oscillatory Cl- secretion supported by the Na+-K+-2Cl- cotransporter activity in real time to drive fluid secretion. The concerted effort of sodium-glucose cotransporter-1, Na+-K+-2Cl- cotransporter, and apically located Cl- channels might underlie the efficient driving of Cl- secretion in different secretory epithelia from a variety of animal species.


Assuntos
Células Acinares , Florizina , Animais , Camundongos , Células Acinares/metabolismo , Carbacol/farmacologia , Cloretos/metabolismo , Glucose , Florizina/farmacologia , Sódio/metabolismo , Simportadores de Cloreto de Sódio-Potássio
11.
Proc Natl Acad Sci U S A ; 121(9): e2316673121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38381791

RESUMO

The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel that regulates transepithelial salt and fluid homeostasis. CFTR dysfunction leads to reduced chloride secretion into the mucosal lining of epithelial tissues, thereby causing the inherited disease cystic fibrosis. Although several structures of CFTR are available, our understanding of the ion-conduction pathway is incomplete. In particular, the route that connects the cytosolic vestibule with the extracellular space has not been clearly defined, and the structure of the open pore remains elusive. Furthermore, although many residues have been implicated in altering the selectivity of CFTR, the structure of the "selectivity filter" has yet to be determined. In this study, we identify a chloride-binding site at the extracellular ends of transmembrane helices 1, 6, and 8, where a dehydrated chloride is coordinated by residues G103, R334, F337, T338, and Y914. Alterations to this site, consistent with its function as a selectivity filter, affect ion selectivity, conductance, and open channel block. This selectivity filter is accessible from the cytosol through a large inner vestibule and opens to the extracellular solvent through a narrow portal. The identification of a chloride-binding site at the intra- and extracellular bridging point leads us to propose a complete conductance path that permits dehydrated chloride ions to traverse the lipid bilayer.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Humanos , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Cloretos/metabolismo , Fibrose Cística/genética , Transporte de Íons , Estrutura Secundária de Proteína
12.
Respir Physiol Neurobiol ; 323: 104237, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38354845

RESUMO

The airway epithelium serves as a critical interface with the external environment, making it vulnerable to various external stimuli. Airway epithelial stress acts as a catalyst for the onset of numerous pulmonary and systemic diseases. Our previous studies have highlighted the impact of acute stress stimuli, especially bacterial lipopolysaccharide (LPS) and hydrogen peroxide (H2O2), on the continuous elevation of intracellular chloride concentration ([Cl-]i). However, the precise mechanism behind this [Cl-]i elevation and the consequential effects of such stress on the injury repair function of airway epithelial cells remain unclear. Our findings indicate that H2O2 induces an elevation in [Cl-]i by modulating the expression of CF transmembrane conductance regulator (CFTR) and Ca-activated transmembrane protein 16 A (TMEM16A) in airway epithelial cells (BEAS-2B), whereas LPS achieves this solely through CFTR. Subsequently, the elevated [Cl-]i level facilitated the injury repair process of airway epithelial cells by activating focal adhesion kinase (FAK). In summary, the [Cl-]i-FAK axis appears to play a promoting effect on the injury repair process triggered by stress stimulation. Furthermore, our findings suggest that abnormalities in the [Cl-]i-FAK signaling axis may play a crucial role in the pathogenesis of chronic airway diseases. Therefore, controlling the structure and function of airway epithelial barriers through the modulation of [Cl-]i holds promising prospects for future applications in managing and treating such conditions.


Assuntos
Cloretos , Regulador de Condutância Transmembrana em Fibrose Cística , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Cloretos/metabolismo , Cloretos/farmacologia , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Células Epiteliais/metabolismo
13.
J Am Chem Soc ; 146(7): 4665-4679, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38319142

RESUMO

The dysfunction and defects of ion channels are associated with many human diseases, especially for loss-of-function mutations in ion channels such as cystic fibrosis transmembrane conductance regulator mutations in cystic fibrosis. Understanding ion channels is of great current importance for both medical and fundamental purposes. Such an understanding should include the ability to predict mutational effects and describe functional and mechanistic effects. In this work, we introduce an approach to predict mutational effects based on kinetic information (including reaction barriers and transition state locations) obtained by studying the working mechanism of target proteins. Specifically, we take the Ca2+-activated chloride channel TMEM16A as an example and utilize the computational biology model to predict the mutational effects of key residues. Encouragingly, we verified our predictions through electrophysiological experiments, demonstrating a 94% prediction accuracy regarding mutational directions. The mutational strength assessed by Pearson's correlation coefficient is -0.80 between our calculations and the experimental results. These findings suggest that the proposed methodology is reliable and can provide valuable guidance for revealing functional mechanisms and identifying key residues of the TMEM16A channel. The proposed approach can be extended to a broad scope of biophysical systems.


Assuntos
Canais de Cloreto , Cloretos , Humanos , Cloretos/metabolismo , Anoctamina-1/genética , Anoctamina-1/metabolismo , Canais de Cloreto/genética , Canais de Cloreto/química , Canais de Cloreto/metabolismo , Mutação , Transdução de Sinais , Cálcio/metabolismo
14.
Cardiorenal Med ; 14(1): 94-104, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38290488

RESUMO

INTRODUCTION: Heart failure (HF) progression according to changes in the serum chloride concentration ([sCl-]) was recently proposed as the "chloride (Cl) theory" for HF pathophysiology. The present study examined the association of neurohormones and renal Cl avidity to determine their contribution to acute HF and their involvement to the "Cl theory." METHODS: Data from 29 patients with acute HF (48% men; 80.3 ± 12 years) were analyzed. Blood and urine samples were obtained before decongestive therapy. Clinical tests included peripheral blood, serum and spot urinary electrolytes, b-type natriuretic peptide (BNP), and plasma neurohormones. RESULTS: In the 29 patients, urinary Cl concentrations ([uCl-]) inversely correlated with log (plasma renin activity [PRA]) (r = -0.64, p = 0.0002) and log (plasma aldosterone concentration) (r = -0.50, p = 0.006). The [sCl-]‒[uCl-] difference positively correlated with log PRA (r = 0.63, p = 0.0002) and log (plasma aldosterone concentration) (r = 0.49, p = 0.008). Patients were divided into 2 groups according to the [sCl-]‒[uCl-] difference, an excretion (low renal Cl avidity) group and an absorption (high renal Cl avidity) group. Compared with the excretion group (-77 to ‒5 mEq/L; n = 14), the absorption group (1-84 mEq/L; n = 15) exhibited greater renal impairment (serum creatinine; 1.45 ± 0.63 vs. 1.00 ± 0.38 mg/d, p = 0.029) and cardiac burden (log BNP; 2.99 ± 0.3 vs. 2.66 ± 0.32 pg/mL, p = 0.008), higher log PRA (0.20 ± 0.58 vs. -0.25 ± 0.35 ng/mL/h, p = 0.018), and lower fractional urinary Cl excretion (1.34 ± 1.3 vs. 5.33 ± 4.1%, p < 0.001). CONCLUSION: Renal Cl avidity differs in acute HF, i.e., excretion (low renal Cl avidity) versus absorption (high renal Cl avidity) types, involving renin-aldosterone-angiotensin activity as the underlying mechanism, which provides the neurohormonal background for the "Cl theory." A version of this study was presented in part at the annual international scientific assembly (ACC.23) of the American College of Cardiology, March 4-6, 2023.


Assuntos
Aldosterona , Cloretos , Insuficiência Cardíaca , Rim , Peptídeo Natriurético Encefálico , Renina , Humanos , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/metabolismo , Masculino , Feminino , Cloretos/metabolismo , Cloretos/sangue , Peptídeo Natriurético Encefálico/sangue , Peptídeo Natriurético Encefálico/metabolismo , Renina/sangue , Renina/metabolismo , Aldosterona/sangue , Aldosterona/metabolismo , Idoso , Idoso de 80 Anos ou mais , Rim/fisiopatologia , Rim/metabolismo , Doença Aguda , Neurotransmissores/metabolismo , Sistema Renina-Angiotensina/fisiologia
15.
Biol Pharm Bull ; 47(1): 159-165, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38171775

RESUMO

Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) are used to treat non-small cell lung cancer with EGFR mutations. However, first-generation erlotinib and second-generation afatinib often cause diarrhea, which may develop because of the association between EGFR-TKIs and the chloride channel or abnormalities in the intestinal microbiota due to disruption of the intestinal immune system. As reports on the effects of EGFR-TKIs on intestinal immunity are lacking, we aimed to determine whether the intestinal immune system is involved in the molecular effects of EGFR-TKIs on chloride channels using Caco-2 cells. Initially, we evaluated the association of chloride channels with α-defensin 5 (DEFA5), a marker of intestinal immunity. Erlotinib and afatinib significantly increased the extracellularly secreted DEFA5 level and autophagy-related 16-like 1 and X-box binding protein 1 transcript levels, indicative of enhanced granule exocytosis. Conversely, intracellular DEFA5 and Toll-like receptor 4 protein expression and tumor necrosis factor-α transcript levels decreased significantly, suggesting that Toll-like receptor 4 suppression repressed DEFA5 production. Furthermore, among the chloride channels, DEFA5 was found to significantly increase the transcript levels of cystic fibrosis transmembrane conductance regulators. These results indicate that DEFA5 plays a significant role in the mechanism of chloride channel-mediated diarrhea induced by EGFR-TKIs. Therefore, we successfully elucidated the potential host action of DEFA5 in cancer therapy for the first time.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , alfa-Defensinas , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Afatinib/efeitos adversos , Cloridrato de Erlotinib/efeitos adversos , Neoplasias Pulmonares/metabolismo , Receptor 4 Toll-Like/metabolismo , alfa-Defensinas/metabolismo , Inibidores de Proteínas Quinases/efeitos adversos , Células CACO-2 , Cloretos/metabolismo , Receptores ErbB/metabolismo , Mutação , Diarreia/induzido quimicamente , Canais de Cloreto/genética
16.
J Clin Invest ; 134(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38165038

RESUMO

Myotonic dystrophy type 1 (DM1) involves misregulated alternative splicing for specific genes. We used exon or nucleotide deletion to mimic altered splicing of genes central to muscle excitation-contraction coupling in mice. Mice with forced skipping of exon 29 in the CaV1.1 calcium channel combined with loss of ClC-1 chloride channel function displayed markedly reduced lifespan, whereas other combinations of splicing mimics did not affect survival. The Ca2+/Cl- bi-channelopathy mice exhibited myotonia, weakness, and impairment of mobility and respiration. Chronic administration of the calcium channel blocker verapamil rescued survival and improved force generation, myotonia, and respiratory function. These results suggest that Ca2+/Cl- bi-channelopathy contributes to muscle impairment in DM1 and is potentially mitigated by common clinically available calcium channel blockers.


Assuntos
Canalopatias , Miotonia , Distrofia Miotônica , Camundongos , Animais , Distrofia Miotônica/tratamento farmacológico , Distrofia Miotônica/genética , Distrofia Miotônica/metabolismo , Cálcio/metabolismo , Cloretos/metabolismo , Miotonia/metabolismo , Verapamil/farmacologia , Verapamil/metabolismo , Canalopatias/genética , Canalopatias/metabolismo , Processamento Alternativo , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Músculo Esquelético/metabolismo
17.
J Cell Sci ; 137(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38294065

RESUMO

Microglia, professional phagocytic cells of the brain, rely upon the appropriate activation of lysosomes to execute their immune and clearance functions. Lysosomal activity is, in turn, modulated by a complex network of over 200 membrane and accessory proteins that relay extracellular cues to these key degradation centers. The ClC-7 chloride (Cl-)-proton (H+) antiporter (also known as CLCN7) is localized to the endolysosomal compartments and mutations in CLCN7 lead to osteopetrosis and neurodegeneration. Although the functions of ClC-7 have been extensively investigated in osteoclasts and neurons, its role in microglia in vivo remains largely unexamined. Here, we show that microglia and embryonic macrophages in zebrafish clcn7 mutants cannot effectively process extracellular debris in the form of apoptotic cells and ß-amyloid. Despite these functional defects, microglia develop normally in clcn7 mutants and display normal expression of endosomal and lysosomal markers. We also find that mutants for ostm1, which encodes the ß-subunit of ClC-7, have a phenotype that is strikingly similar to that of clcn7 mutants. Together, our observations uncover a previously unappreciated role of ClC-7 in microglia and contribute to the understanding of the neurodegenerative phenotypes that accompany mutations in this channel.


Assuntos
Proteínas de Membrana , Microglia , Animais , Microglia/metabolismo , Proteínas de Membrana/metabolismo , Cloretos/metabolismo , Peixe-Zebra/metabolismo , Prótons , Fagócitos/metabolismo , Canais de Cloreto/genética , Canais de Cloreto/metabolismo
18.
Cell Biochem Biophys ; 82(1): 15-34, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38048024

RESUMO

Cystic fibrosis is a genetic disorder inherited in an autosomal recessive manner. It is caused by a mutation in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene on chromosome 7, which leads to abnormal regulation of chloride and bicarbonate ions in cells that line organs like the lungs and pancreas. The CFTR protein plays a crucial role in regulating chloride ion flow, and its absence or malfunction causes the production of thick mucus that affects several organs. There are more than 2000 identified mutations that are classified into seven categories based on their dysfunction mechanisms. In this article, we have conducted a thorough examination and consolidation of the diverse array of tests essential for the quantification of CFTR functionality. Furthermore, we have engaged in a comprehensive discourse regarding the recent advancements in CFTR modulator therapy, a pivotal approach utilized for the management of cystic fibrosis, alongside its concomitant relevance in evaluating CFTR functionality.


Assuntos
Fibrose Cística , Humanos , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Cloretos/metabolismo , Mutação , Transdução de Sinais
19.
Kidney360 ; 5(1): 133-141, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37968800

RESUMO

The renal Na-K-2Cl and Na-Cl cotransporters are the major salt reabsorption pathways in the thick ascending limb of Henle loop and the distal convoluted tubule, respectively. These transporters are the target of the loop and thiazide type diuretics extensively used in the world for the treatment of edematous states and arterial hypertension. The diuretics appeared in the market many years before the salt transport systems were discovered. The evolving of the knowledge and the cloning of the genes encoding the Na-K-2Cl and Na-Cl cotransporters were possible thanks to the study of marine species. This work presents the history of how we came to know the mechanisms for the loop and thiazide type diuretics actions, the use of marine species in the cloning process of these cotransporters and therefore in the whole solute carrier cotransproters 12 (SLC12) family of electroneutral cation chloride cotransporters, and the disease associated with each member of the family.


Assuntos
Cloretos , Simportadores de Cloreto de Sódio-Potássio , Animais , Humanos , Cátions/metabolismo , Cloretos/metabolismo , Diuréticos/metabolismo , Túbulos Renais Distais/metabolismo , Sódio/metabolismo , Cloreto de Sódio/metabolismo , Simportadores de Cloreto de Sódio-Potássio/genética , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Tiazidas/metabolismo , Membro 1 da Família 12 de Carreador de Soluto
20.
Plant Physiol ; 194(2): 1091-1103, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-37925642

RESUMO

Ricca assays allow the direct introduction of compounds extracted from plants or the organisms that attack them into the leaf vasculature. Using chromatographic fractionation of Arabidopsis (Arabidopsis thaliana) leaf extracts, we found glutamate was the most active low mass elicitor of membrane depolarization. However, other known elicitors of membrane depolarization are generated in the wound response. These include unstable aglycones generated by glucosinolate (GSL) breakdown. None of the aglycone-derived GSL-breakdown products, including nitriles and isothiocyanates, that we tested using Ricca assays triggered electrical activity. Instead, we found that glutathione and the GSL-derived compound sulforaphane glutathione triggered membrane depolarizations. These findings identify a potential link between GSL breakdown and glutathione in the generation of membrane depolarizing signals. Noting that the chromatographic fractionation of plant extracts can dilute or exchange ions, we found that Cl- caused glutamate receptor-like3.3-dependent membrane depolarizations. In summary, we show that, in addition to glutamate, glutathione derivatives as well as chloride ions will need to be considered as potential elicitors of wound-response membrane potential change. Finally, by introducing aphid (Brevicoryne brassicae) extracts or the flagellin-derived peptide flg22 into the leaf vasculature we extend the use of Ricca assays for the exploration of insect/plant and bacteria/plant interactions.


Assuntos
Arabidopsis , Cloretos , Cloretos/metabolismo , Arabidopsis/metabolismo , Glutationa/farmacologia , Glutationa/metabolismo , Xilema , Glutamatos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...